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Energy levels of the Schrodinger equation are calculated for several forms of poten-
tials in two- and three-dimensional space and over a wide range of values of the perturba-
tion parameters by means of the Hill determinant approach. The obtained numerical
results are compared with those previously reported by other methods.

1. Introduction

In the past several years, much analytical and numerical work has been published
on one-dimensional systems; however, the information about two- and three-
dimensional systems is still relatively limited. The study of harmonic oscillators in
higher dimensions is of interest not only for purely theoretical reasons but also from
the point of view of applications in chemical physics and nuclear physics, for exam-
ple in the study of intramolecular vibrational energy transfer [1-3], of the vibra-
tional spectroscopy of polyatomic molecules intramolecular [4,5], and of
unimolecular reactions [6].

In this paper we present some extended numerical calculations which use the
Hill determinant technique (in an iterative form) to calculate the energy levels of
the Schrodinger equation for some model potentials in two and three dimensions,
for a wide range of values of the perturbation parameters and for several eigen-
states. The technique has previously been applied to perturbed oscillator systems
with an even parity perturbation [7,8]; in this work we intend to point out the flex-
ibility of the Hill determinant in handling mixed parity perturbations.

The general form of the Schrodinger equation for several model potentials in
multi-dimensional systems can be written as

d
_Zﬁéa—;-i—{- Vd(x;;)\...) \If(XI,---) = E\P(XI:)
I=1 I

(x1=X,x2=y,x3=Z;ﬂ=%a1)- (1)
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Here and subsequently the coordinate indices run from 1 to , the number of dimen-
sions. The g values are chosen to facilitate comparison with previous works.

The present paper treats three examples: the first system studied is the two-
dimensional potential:

Va(x,y; A, ) = 3wlx® + wy?] + Ay + px’]. (2)

Recently there has been a great deal of interest in the analytical as well as the
numerical study of the two-dimensional potential (2). Consequently, it is practi-
cally impossible to present a nearly complete list of references on the potential (2).
Hence, we shall only quote references dealing with the accurate numerical evalua-
tion of energy eigenvalues and with different summability techniques.

The energy levels of this potential have been calculated by semiclassical tech-
niques as well as by quantum mechanical techniques [9-12]. The eigenvalues and
wavefunctions of the potential using adiabatic approximation theory have also
been calculated [13], and hypervirial perturbation theory combined with the adia-
batic approximation has been used to calculate energy levels [14]. Perturbative
semiclassical methods and the WKB approximation have also been used to treat
the same potential [15,16]. The hypervirial perturbative approximation [17] has
been used to study the same potential for several sets of perturbation parameters.

The potential (2) has no strictly bound quantum mechanical states (owing to tun-
nelling), though for small excitations the error in assuming discrete eigenvalues is
small. The quantal energy spectrum of a nonintegrable Hamiltonian is expected to
exhibit a characteristic behaviour; at low energies the energy levels belong to a regu-
lar spectrum, and at higher energies energy levels will exist belonging to an irregular
spectrum. The energy levels of the irregular spectrum are more sensitive to a slowly
changing or fixed perturbation than those of the regular spectrum.

In the case of a three-dimensional system, we consider two model potentials,
the first one being

VI(x, 9,2 0,1, 1, ) = %[wixz + Wiyt + wﬁzz} + A +0xX] + uly? + 67,
(3)

where m means mixed parity perturbation.

The potential V3 (x, y, z; A, n, 11, §) has been previously treated by many research-
ers [16,18,19] using different techniques. For instance, Meyer et al. [18] and Noid et
al. [19] used a semiclassical method to calculate the energy eigenvalues for several
eigenstates. The eigenvalues calculated by the semiclassical method are compared
with exact quantuii eigenvalues, and the agreement is good.

As a second model, we consider a double well potential in a three-dimensional
system:

Vi(x,3,% 22,22, 22 0) = —22x — 22y — 727
F A+t + 2+ 2 + 27+ 227 4)
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where e means even parity perturbation.

The eigenvalue spectrum of the Schrodinger equation (1) with V(x, y, z; Z2,
22 Z2, )) has the feature that the lower eigenvalues are closely bunched in one
group 1f the values of the Z% s are sufficiently large with small values of X. As Z2,
22 and Z? increase, the magmtude of the splitting between these levels decreases
i e

|E111 — Eoool = |Ero0 — Eooo| = |E110 — Eooo| = AE = 0. (5)

2. Therecurrence relation for the potential V>(x, y; A, 1)in a two-
dimensional system

The traditional literature on Hill determinants deals with one-dimensional pro-
blems; the extension to two or three dimensions necessarily involves the use of a
product basis set, leading to large matrix or determinantal problems, which are
conveniently handled by a relaxation method.

Also the Hill determinant approach has been applied to several forms of poten-
tials for important quantum systems [20,21].

In this section we use the Hill determinant approach to calculate the energy levels
of quantum-mechanical systems with potential functions which have nonsym-
metric behaviour. An extended analysis of numerical calculations is carried out for
several model potentials in two- and three-dimensional systems; the results reveal
the applicability of the Hill determinant approach for handling potentials in a mul-
tidimensional system.

To find the recurrence relations which allow us to calculate the eigenvalues for
the Schrodinger equation (1), we introduce the wavefunction in the form

Wy, (%,9) = exp Yo + ay”] Y H(M,N)(x*y"). (6)
M\N

Substituting this wavefunction in the Schrodinger equation (1), we obtain, after
some algebra, the following recurrence relation:

[(2axM + 2a,N + ax + o, — 2E|H(M,N) = W(M,N), (7N
where
W(M,N)=(M+2)(M+1)H(M +2,N)+ (N +2)(N + 1)H(M,N +2)
+(a} +w)H(M —2,N) + (o +w)H(M,N —2)
—2\H(M — 1,N = 2) + uH(M - 3,N)]. (8)

The recurrence relation (7) is used as follows. First the state numbers n, and n,
(0, 1, 2, ...) are chosen, specifying which particular state is being treated, and
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then the initial coefficient H(My, Np) is set equal to one, with My = n, and
N() = Ry.

In matrix-theoretic terms, the calculation is using a Gauss—Seidel (R = 1) or suc-
cessive-over-relaxation (R # 1) approach to calculate the low eigenvalues of a large
matrix. Increasing M and N corresponds to increasing the number of basis states,
i.e., the dimension of the matrix. In the present approach the relevant matrix ele-
ments are very simple, as seen from eq. (7), and the iterative solution method,
although often only useful for low eigenvalues, avoids explicit storage and manipu-
lation of large matrices. Allthe H(M, N) with (M, N) # (My, No) are then adjusted
according to the assignment

H(M,N) = W(M,N)[axM + a,N + ax + a, — 2E] '

)
for some fixed o, o, and some trial E value. In order to speed up the convergence
of energy, we must choose appropriate initial values of convergence parameters.
The energy is found from the relation (9) for the special case M = My, N = Ny, and
the coefficient on the left-hand side becomes H(Mjy, Ny) = 1. After this adjustment
process a revised E estimate E is calculated using the assignment statements

E. = [2axM + 20yN + 0 + o] — W(My, No), (10)

E=RE.+(1-RE. (11)

The relaxation parameter R can be changed in value to help in stabilizing the con-
vergence to a desired eigenvalue.

3. The recurrence relation for the potentials V3"(x, y, z; A, n, 1, ) and V5 (x, y,

z; 22,22, 22, ) in three dimensions

The algebraic manipulations needed to derive the required recurrence relation
in three dimensions are similar to those which have been used previously in connec-
tion with the two-dimensional case.

To begin our analysis, we take the wavefunction describing this system in the
form

U, e (%,7,2) = exp[—3(0x® + 0y)* + 0.2%)] Y H(M,N, L) (xMyN %) .
(12)

If we use the wave function U,y e (x, y, 2) in the Schrodinger equation (1), after
some algebra, we obtain the following recurrence relation for the potentials (3) and

(4):
[2M0x+2Nay+2Laz +ax+oy+a; — E]H(M,N,L) =W(M,N,L),
(13)
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where, for the potential (3)
W(M,N,L) = (M +2)(M +1)H(M +2,N, L)
+ (N +2)(N+1)H(M,N +2,L)
+(L+2)(L+1)H(M,N,L+2)
+ (o2 +uwA)H(M —2,N, L) + (a§ + w§) H(M,N —2,L)
+ (a2 +u)H(M,N,L-2)
—2A\[H(M = 1,N —2,L) + nH(M — 3,N,L)|
—2u[H(M,N —1,L—2)+¢H(M,N —3,L)| (14)
and for the potential (4)
W(M,N,L) = (M +2)(M+1)H(M +2,N,L)
+(N+2)(N+1)H(M,N +2,L)
(L+2)(L+1)H(M,N,L+?2)
(o2 +Z2)H(M - 2,N,L) + (a§ n Zg)H(M,N _2,L)
(@2 ,

—AH(M —4,N,L)+ HM,N —4,L) + HM,N, L — 4)]

+
+
+ (a2 +Z)H(M,N,L-2)

—NH(M —2,N—-2,L)+ HM —2,N,L —2)
+H(M,N -2,L-2)]. (15)

The initial condition to start the calculation is that H(My, Ny, Ly) = 1. All the

H(M, N, L) with (M, N, L) # (My, Ny, Ly) are then calculated sequentially from
therelation

H(M,N,L) = W(M,N,L)[2Mo + 2Na, + 2La; + ax + oy + a; — E] .
(16)

The energy estimate is revised using the relation (16) for the special case M = M,,
N = Ny, L = L. The coefficient on the left-hand side becomes H(My, Ny, Lo) = 1.
The revised energy thus takes the form

E, = 2Mya, + 2Noay, + 2L, + ax + oy + a; — W (Mo, No, Ly) (17)
or, with a relaxation parameter,
E=RE.+(1-RE. (18)
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After many cycles the energy estimate coverges. The upper limits on M, N and L
can then be increased and the calculation repeated, until eventually the energy is
not affected by further increase in the upper limits. The upper limit in our calcula-
tionis (M, N,L = Q = 60).

The convergence parameters ax, o, a, play an important role in controlling
the convergence properties of our calculations. The optimum ay, a,, o; values were
initially obtained by numerical search, as illustrated by the data in Tables 5 and 6,
which shows how varying the convergence parameters affects the accuracy of the
energies obtained for the levels Eqygo, Eiop and Eyy;.

Table 1

Comparison of energy values for the potential V3(x, y; A, 1) with those from the exact quantum
(EQ) [13], adiabatic approximation (AA) [11], semiclassical (SC) [13] and hypervirial (HR) [12] meth-
ods for several sets of perturbation parameters. The empty spaces mean the results are not available.

Ny ny Present result EQ AA SC HR
WP = 0.29375,w§ =2.12581, u = 0.08414, A = —-0.1116

0 0 0.9916262096827 0.9916 0.9918 0.9920 0.9918
1 0 1.5158523509194 1.5159 1.5170 1.5164 1.5170
0 1 2.4189087918281 2.4188 2.4194 2.4194 2.4194
1 1 2.9217575184111

w? =036, =1.96,u=0.1,A = —0.1

0 0 0.9939049915996 0.9939 0.9940 0.9941 0.9940
1 0 1.5809044418757 1.5809 1.5815 1.5812 1.5815
0 1 2.3723335327149

1 1 2.9442568702125

Wl =049,02 =1.69,u=0.1,1=-0.1

0 0 0.9955188809798 0.9955 0.9956 0.9955 0.9956
1 0 1.6869942776770 1.6870 1.6873 1.6870 1.6873
0 1 2.2781315939504 2.2781 2.2783 2.2782 2.2783
1 1 2.9583526851367 2.9853 2.9593 2.9584 2.9593
w2 =081,0} =121, =0.1,A= —0.08

0 0 0.9979600298595 0.9980 0.9980 0.9978 0.9980
1 0 1.8943550507194 1.8944 1.8947 1.8941 1.8947
0 I 2.0891226099777 2.0890 2.0894 2.0890 2.0894
1 1 2.9796174309586
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4. Results and discussion

In this paper, we have improved the convergence properties of the Hill determi-
nant approach by using the convergence factor exp[— 1 (axx? + ay? + a,2%)] for a
three-dimensional system, in contrast to the previous work [8], which were limited
to a uniform value of the convergence parameters (ax = a;, = o). The Hill deter-
minant approach is revisited and implemented in a more effective way to give excel-
lent accuracy even for potentials with mixed parity, whereas previous works [7,8]
treated potentials with even parity only.

The numerical results for a two-dimensional system are presented in Tables 1
and 2, for the ground state and the first three excited states with different values of

Table2
Comparison of energy values for potential V5(x, y; A, u) with variation in perturbation parameters
A w? =049, wﬁ = 1.69, A = —pu. Theempty spaces mean the results are not available.

- T, 1y Present result EQ AA SC " HR
0.06 0,0 0.99878298845122 0.9988 0.9988 0.9987 0.9988
0.08 0.99750503091855 0.9975 0.9975 0.9975 0.9975
0.10 0.99551888097989 0.9955 0.9956 0.9955 0.9956
0.12 0.99259494493192 0.9926 0.9927 0.9927 0.9927
0.14 0.988426091755 0.9884 0.9887 0.9889 0.9885
0.16 0.98256799465 0.9826 0.9833 0.9836 0.9827
0.18 0.9742855 0.9743 0.9761 0.9764 0.9745
0.20 0.9619 0.9621 0.9668 0.9667 0.9625
0.06 1,0 1.69700382620682 1.6970 1.6971 1.6970 1.6971
0.08 1.69330381519851 1.6933 1.6934 1.6933 1.6934
0.10 1.68699427768 1.6870 1.6873 1.6870 1.6872
0.12 1.6768856678 1.6769 1.6777 1.6770 1.6772
0.14 1.66120482 1.6612 1.6634 1.6617 1.6616
0.16 1.6369055 1.6370 1.6430 1.6382 1.6376
0.06 0,1 2.29318930861531 2.2932 2.2932 2.2932 2.2932
0.08 2.28701021758891 2.2870 2.2871 2.2870 2.2871
0.10 2.27813159395040 2.2781 2.2783 2.2782 2.2783
0.12 2.265844300562 2.2658 2.2663 2.2661 2.2661
0.14 2.249041496882 2.2490 2.2502 2.2496 2.2494
0.16 2.2257015 2.2257 2.2288 2.2268 2.2263
0.06 1,1 2.98862233945227

0.08 2.97681366046227

0.10 2.95835268513667

0.12 2.9305035186199

0.14 2.88843544175

0.15 2.859086

0.16 2.82045
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the perturbation parameters. It is clear that the Hill determinant approach works
very well and gives results of high accuracy; we present a comparison of the Hill
determinant results with those from the adiabatic approximation [13], hypervirial
methods [14], exact quantum [15] and semiclassical [15] methods, for several sets of
perturbation parameters (), w2, w2, ).

In the three-dimensional case, we succeeded in finding energy values for the
potential V3 (x, y, z; A, n, p, ) for several states with high accuracy for different
values of the perturbation parameters. In Table 3, we compare our calculations
with those calculated by another technique [18]. Again it is seen that the Hill deter-
minant results give an accuracy higher than that of previous results [16,18].

It should be mentioned that the values of convergence parameters ay, a,, a;
which have been chosen to give the best convergence of eigenvalues in the present
calculations for the potentials V5 (x, y; A, 1) and V3*(x, y, 2z, A, 0, i, §) were selected

Table 3
Energy levels for the potential V" (x, y, z; A, , p, () for several sets of perturbation. The results with
underlines correspond to Noid et al. [18].

Hx ny h; - - n C h}i w% (Ug
0.1 0.1 0.1 0.1 0.49 1.69 1

0 0 0 1.493 752 135 656 4 1.494

1 0 0 2.185 148 401 882 8 2.185

0 1 0 2.771 863 548 529 0 2.771

0 0 1 2.485674 588094 9 2.486

1 0 1 3.176 716 038 054 7 3.177

0 1 I 3.755 063 084 598 1

Ry ny ny —A —H n ¢ w_?:' DJ§ “’3
0.1 0.1 0.1 0.1 1.44 1.69 1.21

0 0 0 1.797 312 142 821 8

1 0 0 2.994 932205 1337

0 1 0 3.088 7310393924

0 0 1 2.890 761 654017 6

1 0 1 4.087 7859824440

0 1 1 4.176 686 910 250 4

Ny ny n; -A —H n ¢ w,% wi w%
0.1 0.1 0.1 0.1 1 1 1

0 0 0 1.493 8897543419

1 0 0 2.491 684 592 452 0

0 1 0 2470417 864 392 6

0 0 1 2479961 7327012

1 1 0 3.486 3124109219

0 1 1 3.484 080 1313024
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by looking for stability of the results with respect to the small variations of ay, o,
o, at given values of the perturbation parameters; this picture is very clear in
Table 5. ‘

The energy eigenvalues for a double well potential V3(x, y, z; Z2, Z2, Z2, X) ina
three-dimensional system are calculated, and their energy eigenvalues are given in
Table 4, for several eigenstates Ego, Eo10, Foo1, Eo11, E110, E101, E111 and for various
values of Z2, Z%, Z? and ). We achieved results with high accuracy by varying the
convergence parameters oy, «,, a, and increasing the dimension of H(M, N, L).
Even higher accuracies can be achieved at the expense of greater computation
times.

We should comment here that the sensitivity of the results for the double well
potential V3(x, y, z; Zﬁ, Zﬁ, Zzz, A) to the values of the convergence parametersis less

Table4
Eigenvalues for the double-well potential V(x, y, z; A, Z2, Zi, Z?) for several sets of parameters ),
Z2,7%and Z2. '

x>y

Aoz 2 Z2 (0,00 (1,0,0) (0,1,0) 0,0,1)

15. 5 6 8 —4.2089203909 —1.2695363272 —1.9487401637  —3.8563290308
1 4 5 6 —3.7951941464  —1.4046920036 —2.2457674270  —3.3820801205
3 4 5 6 1.6920177798  5.4085248417  4.9428256619  4.4354816840
s 1 2 3 5.3813154487  10.8591103587  10.5317790363  10.1894331020
0 2 3 4 6.8694908083  13.6524250439  13.3915201768  13.1231886059
15 25 5 6 7.6288203735  15.4517096051  14.8773968036  14.6387792635
25 5 15 10 8.6400011334  17.6854676839  17.1955310426  16.6857992882
50 5 10 15 11.3959002985  23.1701253327  22.4075939324  21.6069719240
102 10 20 30  13.4314180120  28.1489302777  26.9208539381  25.6133853735
10° 50 75 100  30.8470156963  62.0823088756  60.6648890561  59.1997061854
10 100 150 200  75.4372892252 144.9710534466 143.7016756623 142.4142827569
105 400 500 600 166.5007933768 316.5824930484 315.4196477084 314.2301591983
105 500 10° 10 342.8777073875 675.6813343918 673.0127649141 622.0165183266
Aoz 2 2 (L)) (1,0,1) (1,1,0) (1,1,1)

15 5 6 8 —0.9288022685  —0.365963424 1.240162172 2.846361313
1 4 5 6 —1.1538776288  —0.469239288 0.472778214 2.057167192
3 4 5 6 8.5761831950 8.898034334 9.421983686  13.688715574
5 1 2 3 161671774815 16.463119215  16.772889953  23.045118524
0 2 3 4 20.6675488416  20.903648182  21.146591152  29.221425091
15 25 5 6 23.0878091383  23.606539393  23.822216095  32.944748459
25 5 75 10 26.6855508711  27.126820122  27.586277012  38.186366376
50 5 10 15  34.4194425131  35.108104259  35.831825933  49.223254109
102 10 20 30  41.4570738270  42.560805592  43.738352405  60.047777705
10° 50 75 100  93.8487388021  95.128723987  96.452664870  133.383835350
104 100 150 200 220.3512481378  221.507970413  222.680434249  307.057428627
105 400 500 600 483.5899934131  484.659710800  485.735581406  670.408643046
106 500 10° 10 998.5727443619 1000.998437770 1047.399135131  1410.533240732
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Table 5

The convergence of two eigenvalues for the states Wogp and ¥ygp for the potential ¥ (x, y, z; A, p, 7,
¢), as a function of the convergence parameters oy, a,, a;. The empty spaces mean the eigenvalues
cannot be obtained with the values of convergence parameters.

A=045p=—01,7=01,¢=01,u2 = 049,02 = 1.69,07 = |

Eyoo

Qe Qy [ 2

0.6 0.7 0.8
1.4937521356564 0.98 0.96 1.1
1.4937521356564 1.1 1.2 1.3
1.4937521356 1.6 1.7 1.8
1.493752 2.2 24 2.6
1.494 2 25 2.8
1.49 2.5 2.8 3
EIOO 239 Gty 0y

0.6 0.7 0.8
2.18 0.95 0.98 1.1
2.1852 1.1 1 0.95
2.1851484018 1.2 1.15 1.1
2.1851484018828 14 1.1 1.2
2.1851484018828 1.5 1.2 1.25
2.18 1.7 1.6 1.8

Table 6

Convergence for some eigenvalues for the double-well potential V§(x, y, z; A, Z2, Z)Z,, Z2) for several
sets of parameters A, Zf‘, Z}, and Zf for various values of the convergence parameters oy, o, a,. The
empty spaces mean the eigenvalues cannot be obtained with the values of convergence parameters.

A z2 z? (0,0,0) (4L, Qx oy ay

15 2 4 4 5 6
7.8267987 33.378436 8 10 12
7.8267987280488 33.378436640432 10 12 14
7.8267987280488 33.378436640432 11 13 15
7.8267987 33.3784366 15 18 20

108 500 103 342.8 1410.5 240 260 280
342.8777 1410.5332 300 320 340
342.877707387 1410.5332407 360 380 400
342.8777073875 1410.533240732 420 430 440
342.8777073875 1410.533240732 425 425 445
342.8777073875 1410.533240732 450 460 480
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than in the case of the other potentials V5(x, y; A, 1) and VI*(x, y, z; A, m, p, £); this
is clear from Table 6.

We should point out that Aitken’s transformation applied to the iterates E, leads
to an acceleration in the rate of convergence of the calculations and increases the
accuracy for a given computing time.
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