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Energy levels of the Schrtidinger equation are calculated for several forms of poten- 
tials in two- and three-dimensional space and over a wide range ofvalues of the perturba- 
tion parameters by means of the Hill determinant approach. The obtained numerical 
results are compared with those previously reported by other methods. 

1. Introduct ion  

In the past several years, much analytical and numerical work has been published 
on one-dimensional systems; however, the information about two- and three- 
dimensional systems is still relatively limited. The study of harmonic oscillators in 
higher dimensions is of interest not only for purely theoretical reasons but also from 
the point of view of applications in chemical physics and nuclear physics, for exam- 
ple in the study of intramolecular vibrational energy transfer [1-3], of the vibra- 
tional spectroscopy of polyatomic molecules intramolecular [4,5], and of 
unimolecular reactions [6]. 

In this paper we present some extended numerical calculations which use the 
Hill determinant technique (in an iterative form) to calculate the energy levels of 
the Schr6dinger equation for some model potentials in two and three dimensions, 
for a wide range of values of the perturbation parameters and for several eigen- 
states. The technique has previously been applied to perturbed oscillator systems 
with an even parity perturbation [7,8]; in this work we intend to point out the flex- 
ibility of the Hill determinant in handling mixed parity perturbations. 

The general form of the Schr6dinger equation for several model potentials in 
multi-dimensional systems can be written as 

- ~ + V ~ ( x r ; ~ . . . )  ~ ( x I , . . . )  = E ~ , ( x r , . . . )  

(Xl : X,  X2 : y, x3 : z ; / 9 :  1, 1). (1) 
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Here and subsequently the coordinate indices run from 1 to d, the number of dimen- 
sions. The/3 values are chosen to facilitate comparison with previous works. 

The present paper treats three examples: the first system studied is the two- 
dimensional potential: 

1 2  2 A[xy 2 #x 31 (2) V2(x,y;A,#) = i[WxX2 + w~yZ] + + . 

Recently there has been a great deal of interest in the analytical as well as the 
numerical study of the two-dimensional potential (2). Consequently, it is practi- 
cally impossible to present a nearly complete list of references on the potential (2). 
Hence, we shall only quote references dealing with the accurate numerical evalua- 
tion of energy eigenvalues and with different summability techniques. 

The energy levels of this potential have been calculated by semiclassical tech- 
niques as well as by quantum mechanical techniques [9-12]. The eigenvalues and 
wavefunctions of the potential using adiabatic approximation theory have also 
been calculated [1 3], and hypervirial perturbation theory combined with the adia- 
batic approximation has been used to calculate energy levels [14]." Perturbative 
semiclassical methods and the WKB approximation have also been used to treat 
the same potential [15,16]. The hypervirial perturbative approximation [17] has 
been used to study the same potential for several sets of perturbation parameters. 

The potential (2) has no strictly bound quantum mechanical states (owing to tun- 
nelling), though for small excitations the error in assuming discrete eigenvalues is 
small. The quantal energy spectrum of a nonintegrable Hamiltonian is expected to 
exhibit a characteristic behaviour; at low energies the energy levels belong to a regu- 
lar spectrum, and at higher energies energy levels will exist belonging to an irregular 
spectrum. The energy levels of the irregular spectrum are more sensitive to a slowly 
changing or fixed perturbation than those of the regular spectrum. 

In the case of a three-dimensional system, we consider two model potentials, 
the first one being 

=1 2 JzZ21 A{xy2 r/x3]+#[yz2 ~y3] V~3 (x,y ,z;A,  rl,#,¢) i[COxX 2 +@y2 + + + + , 

(3) 
where m means mixed parity perturbation. 

The potential V~3 (x, y, z; ~, 77, #, ~) has been previously treated by many research- 
ers [1 6,1 8,19] using different techniques. For instance, Meyer et al. [1 8] and Noid et 
al. [19] used a semiclassical method to calculate the energy eigenvalues for several 
eigenstates. The eigenvalues calculated by the semiclassical method are compared 
with exact quantmn eigenvalues, and the agreement is good. 

As a second model, we consider a double well potential in a three-dimensional 
system: 

V~3(x,y,z;Z 2 2 2 x, Zy,Zz ,  A) = -Z2x x2 _ Z2y 2 _ Z2z z2 

At" A [X 4 -I- y4 q_ Z 4 _1_ 2x2y2 q_ 2 ~ 2  + 2y2z2] , (4) 
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where e means even parity perturbation. 
The eigenvalue spectrum of the Schr6dinger equation (1) with V~(x, y, z; Z 2, 

Z 2, Z 2, A) has the feature that the lower eigenvalues are closely bunched in one 
group if the values of the Z 2,'s are sufficiently large with small values of A. As Z 2, 
Z 2 and Z 2 increase, the magnitude of the splitting between these levels decreases, 
I .e.  

I E l l l  - -  E000{ ~ {El00 - E000{ ~ {E,,0 - E000{ -~ AE ~ O. (5) 

2. The recurrence relation for the potential V2(x, y; A, # ) in  a two- 
dimensional system 

The traditional literature on Hill determinants deals with one-dimensional pro- 
blems; the extension to two or three dimensions necessarily involves the use of a 
product basis set, leading to large matrix or determinantal problems, which are 
conveniently handled by a relaxation method. 

Also the Hill determinant approach has been applied to several forms of poten- 
tials for important quantum systems [20,21]. 

In this section we use the Hill determinant approach to calculate the energy levels 
of quantum-mechanical systems with potential functions which have nonsym- 
metric behaviour. An extended analysis of numerical calculations is carried out for 
several model potentials in two- and three-dimensional systems; the results reveal 
the applicability of the Hill determinant approach for handling potentials in a mul- 
tidimensional system. 

To find the recurrence relations which allow us to calculate the eigenvalues for 
the Schr6dinger equation (1), we introduce the wavefunction in the form 

'Onx,n,(X,y) = exP-½[ax x2 + ayY 2] Z H(M'N)(xMyN)  " (6) 
M,N 

Substituting this wavefunction in the Schr6dinger equation (1), we obtain, after 
some algebra, the following recurrence relation: 

[(2axM + 2ayN + ax + ay - 2E]H(M,N)  = W ( M , N )  , (7) 

where 

W(M, N) = (M + 2)(M + 1)H(M + 2, N) + (N + 2)(N + 1)H(M, N + 2) 

+ (O~2x +W~x)U(M- 2, N) + (a 2 +w~y)U(M,N-  2) 

- 2 A [ H ( M -  1 , N -  2) + # H ( M -  3, N)]. (8) 

The recurrence relation (7) is used as follows. First the state numbers nx and ny 
(0, l, 2, . . . )  are chosen, specifying which particular state is being treated, and 
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then the initial coefficient H(M0, No) is set equal to one, with M0 = nx and 
No = ny. 

In matrix-theoretic terms, the calculation is using a Gauss-Seidel (R = 1) or suc- 
cessive-over-relaxation (R ¢- 1) approach to calculate the low eigenvalues of a large 
matrix. Increasing M and N corresponds to increasing the number of basis states, 
i.e., the dimension of the matrix. In the present approach the relevant matrix ele- 
ments are very simple, as seen from eq. (7), and the iterative solution method, 
although often only useful for low eigenvalues, avoids explicit storage and manipu- 
lation of large matrices. All the H(M,  N) with (M, N) ~ (M0, No) are then adjusted 
according to the assignment 

H ( M , N )  = W ( M , N ) [ a x M  +&yN +ol x + a y - -  2E] -I (9) 

for some fixed ax, ay and some trial E value. In order to speed up the convergence 
of energy, we must choose appropriate initial values of convergence parameters. 
The energy is found from the relation (9) for the special case M = M0, N = No, and 
the coefficient on the left-hand side becomes H(Mo, No) = 1. After this adjustment 
process a revised E estimate E is calculated using the assignment statements 

E e =  [2e~xM + 2c~yN + O~x +cb, ] - W(Mo, No) , (10) 

E - -  REe + (1 - R)E.  (11) 

The relaxation parameter R can be changed in value to help in stabilizing the con- 
vergence to a desired eigenvalue. 

3. The recurrence relation for the potentials V~3 (x, y, z; A, ~, #, ~) and V~3 (x, y, 
2 z; z~, z7, ~ ,  A) in three dimensions 

The algebraic manipulations needed to derive the required recurrence relation 
in three dimensions are similar to those which have been used previously in connec- 
tion with the two-dimensional case. 

To begin our analysis, we take the wavefunction describing this system in the 
form 

~nx,..,n.(X,y,z) = exp[-½(axx 2 + ayy 2 + azz2)] E H(M'N 'L) (xMyNzL)  " 

(12) 

If  we use the wave function ~.x,..,.. (x, y, z) in the Schr6dinger equation (1), after 
some algebra, we obtain the following recurrence relation for the potentials (3) and 
(4): 

[2Max + 2Nay + 2Laz + ax + ay + az - E ] H ( M , N , L )  = W ( M , N , L )  , 

(13) 
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where, for the potential (3) 

W(M,N,L) = ( M + 2 ) ( M +  1)H(M + 2,N,L) 

+ ( g  + 2 ) ( N +  1)H(M,N+ 2, L) 

+ (L + 2)(L + 1)H(M, N, L + 2) 

+/~x + ~ / , , ( - -  2, ~, ~ + (~ + ~),,~M, ~ _  ~,~ 

+ (a2z +W~z)H(M,N,L- 2) 

- 2A[ H( M-  1 , N -  2, L) + rIH(M- 3, N, L)] 

- 2/z[H(M, N - 1, L - 2) + ~H(M, N - 3, L)] (14) 

and for the potential (4) 

W(M,N,L) = ( M + 2 ) ( M +  1)H(M + 2,N,L) 

+ (U + 2 ) ( N +  1)H(M,N+Z,L) 

+ (L + 2)(L + 1)H(M, N, L + 2) 

+ / ~  + ~x~/,,~- ~,~, ~ + (o~ + ~),,(M, ~ -  ~,~ 

+ (a2z + Z2z)H(M,N,L - 2) 

- A[H(M-4,  N,L) + H ( M , N - 4 , L )  + H(M,N ,L -4 ) ]  

- 2A[ H( M-  2, N -  2, L) + H ( M -  2, N , L -  2) 

+ H ( M , N - 2 , L - 2 ) ] .  (15) 

The initial condition to start the calculation is that H(Mo, No, Lo) = 1. All the 
H(M, N, L) with (M, N, L) ¢ (Mo, No, Lo) are then calculated sequentially from 
the relation 

H(M,N,L) = W(M,N,L)[2Max + 2Nay + 2Laz + ax + ay + a z -  E] -1 
(16) 

The energy estimate is revised using the relation (16) for the special case M = Mo, 
N = No, L = Lo. The coefficient on the left-hand side becomes H(Mo, No, Lo) -- 1. 
The revised energy thus takes the form 

Ee=2Moo~x+2Noay+2Loo~z+OZx+ay+az- W(Mo, No, Lo) (17) 

or, with a relaxation parameter, 

_E = REe + (1 - R)E. (18) 
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A f t e r  m a n y  cycles  the  ene rgy  e s t i m a t e  coverges .  T h e  u p p e r  l imi ts  on  M ,  N a n d  L 
c a n  t h e n  be  inc reased  a n d  the  ca l cu la t ion  repea ted ,  unt i l  even tua l l y  the  e n e r g y  is 
n o t  a f f ec t ed  b y  fu r t he r  increase  in the u p p e r  l imits .  T h e  u p p e r  l imit  in o u r  ca lcu la -  

t ion  is ( M ,  N ,  L = Q = 60). 
T h e  c o n v e r g e n c e  p a r a m e t e r s  ax, ay, az p lay  an  i m p o r t a n t  role  in c o n t r o l l i n g  

the  c o n v e r g e n c e  p r o p e r t i e s  o f  ou r  ca lcu la t ions .  T h e  o p t i m u m  ax, ay, C~z va lues  were  
in i t ia l ly  o b t a i n e d  by  n u m e r i c a l  search,  as i l lus t ra ted  b y  the d a t a  in T a b l e s  5 a n d  6, 
wh ich  shows  h o w  v a r y i n g  the c o n v e r g e n c e  p a r a m e t e r s  a f fec t s  the  a c c u r a c y  o f  the  

energies  o b t a i n e d  fo r  the  levels E000, El00 a n d  E111. 

Table 1 
Comparison of energy values for the potential V2(x, y; A, #) with those from the exact quantum 
(EQ) [13], adiabatic approximation (AA) [11], semiclassical (SC) [13] and hypervirial (UR) [12] meth- 
ods for several sets of perturbation parameters. The empty spaces mean the results are not available. 

nx ny Present result EQ AA SC HR 

W2x = 0.29375, w~y= 2.12581,# = 0.08414, A = -0.1116 

0 0 0.9916262096827 0.9916 0.9918 0.9920 0.9918 
1 0 1.5158523509194 1.5159 1.5170 1.5164 1.5170 
0 1 2.4189087918281 2.4188 2.4194 2.4194 2.4194 
1 1 2.9217575184111 

w2~ = 0.36,w~ = 1.96,# = 0.1,A = -0.1 

0 0 0.9939049915996 0.9939 0.9940 0.9941 0.9940 
1 0 1.5809044418757 1.5809 1.5815 1.5812 1.5815 
0 1 2.3723335327149 
1 1 2.9442568702125 

w2x = 0.49, O.~y= 1.69,# = O.1,A = -0.1 

0 0 0.9955188809798 0.9955 0.9956 0.9955 0.9956 
1 0 1.6869942776770 1.6870 1.6873 1.6870 1.6873 
0 1 2.2781315939504 2.2781 2.2783 2.2782 2.2783 
1 1 2.9583526851367 2.9853 2.9593 2.9584 2.9593 

J x  = 0.81,o.r~y = 1 . 2 1 , #  = O.1,A = - 0 . 0 8  

0 0 0.9979600298595 0.9980 0.9980 0.9978 0.9980 
1 0 1.8943550507194 1.8944 1.8947 1.8941 1.8947 
0 1 2.0891226099777 2.0890 2.0894 2.0890 2.0894 
1 1 2.9796174309586 
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4. Results  and discussion 

In this paper, we have improved the convergence properties of the Hill determi- 
nant approach by using the convergence factor exp[-  1 ( a x x  2 + ayy2  + O~zZ2)] for a 
three-dimensional system, in contrast to the previous work [8], which were limited 
to a uniform value of the convergence parameters (ax  = a e = az) .  The Hill deter- 
minant approach is revisited and implemented in a more effective way to give excel- 
lent accuracy even for potentials with mixed parity, whereas previous works [7,8] 
treated potentials with even parity only. 

The numerical results for a two-dimensional system are presented in Tables 1 
and 2, for the ground state and the first three excited states with different values of 

Table 2 
Comparison of energy values for potential V2(x, y; A, #) with variation in perturbation parameters 
A. W2x = 0.49, W~y = 1.69, A = - # .  The empty spaces mean the results are not available. 

- A  nx, ny Presentresult EQ AA SC HR 

0.06 0,0 0.99878298845122 0.9988 0.9988 0.9987 0.9988 
0.08 0.99750503091855 0.9975 0.9975 0.9975 0.9975 
0.10 0.99551888097989 0.9955 0.9956 0.9955 0.9956 
0.12 0.99259494493192 0.9926 0.9927 0.9927 0.9927 
0.14 0.988426091755 0.9884 0.9887 0.9889 0.9885 
0.16 0.98256799465 0.9826 0.9833 0.9836 0.9827 
0.18 0.9742855 0.9743 0.9761 0.9764 0.9745 
0.20 0.9619 0.9621 0.9668 0.9667 0.9625 

0.06 1,0 1.69700382620682 1.6970 1.6971 1.6970 1.6971 
0.08 1.69330381519851 1.6933 1.6934 1.6933 1.6934 
0.10 1.68699427768 1.6870 1.6873 1.6870 1.6872 
0.12 1.6768856678 1.6769 1.6777 1.6770 1.6772 
0.14 1.66120482 1.6612 1.6634 1.6617 1.6616 
0.16 1.6369055 1.6370 1.6430 1.6382 1.6376 

0.06 0,1 2.29318930861531 2.2932 2.2932 2.2932 2.2932 
0.08 2.28701021758891 2.2870 2.2871 2.2870 2.2871 
0.10 2.27813159395040 2.2781 2.2783 2.2782 2.2783 
0.12 2.265844300562 2.2658 2.2663 2.2661 2.2661 
0.14 2.249041496882 2.2490 2.2502 2.2496 2.2494 
0.16 2.2257015 2.2257 2.2288 2.2268 2.2263 

0.06 1,1 2.98862233945227 
0.08 2.97681366046227 
0.10 2.95835268513667 
0.12 2.9305035186199 
0.14 2.88843544175 
0.15 2.859086 
0.16 2.82045 
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the  p e r t u r b a t i o n  pa rame te r s .  I t  is clear  tha t  the Hill  d e t e r m i n a n t  a p p r o a c h  w o rk s  
ve ry  well a nd  gives resul ts  o f  h igh accuracy;  we p resen t  a c o m p a r i s o n  o f  the  Hil l  
d e t e r m i n a n t  resul ts  wi th  those  f r o m  the ad iaba t ic  a p p r o x i m a t i o n  [13], hyperv i r i a l  
m e t h o d s  [14], exac t  q u a n t u m  [15] and  semiclassical  [15] m e th o d s ,  fo r  several  sets o f  
p e r t u r b a t i o n  p a r a m e t e r s  (A, a~, @,/~). 

In  the  th ree -d imens iona l  case, we succeeded in f inding ene rgy  values  fo r  the  
po ten t i a l  V~3 (x, y,  z; A, rl, tz, ~) fo r  several  s tates  with h igh a c c u r a c y  for  d i f fe ren t  
va lues  o f  the p e r t u r b a t i o n  pa ramete r s .  In Tab le  3, we c o m p a r e  o u r  ca lcu la t ions  
wi th  those  ca lcu la ted  by  a n o t h e r  t echn ique  [18]. Aga in  it is seen t h a t  the Hil l  de te r -  
m i n a n t  resul ts  give an  accu racy  h igher  than  tha t  o f  p rev ious  resul ts  [16,18]. 

I t  shou ld  be m e n t i o n e d  tha t  the values  o f  convergence  p a r a m e t e r s  ax,  ay, az 
which  have  been  chosen  to  give the best  conve rgence  o f  e igenvalues  in the p resen t  
ca lcu la t ions  for  the po ten t ia l s  V2(x, y; A, #) and  v~n3 (x, y, z, A, r/, #, ( )  were  selected 

Table 3 
Energy levels for the potential V~3(x , y, z; A, 7/, #, if) for several sets of perturbation. The results with 
underlines correspond to Noid et al. [18]. 

0.1 0.1 0.1 0.1 0.49 1.69 1 

0 0 0 1.493 752 135 656 4 1.494 
1 0 0 2.185 148 401 882 8 2.185 
0 1 0 2.771 863 548 529 0 2.771 
0 0 1 2.485 674 588 094 9 2.486 
1 0 1 3.176 716 038 054 7 3.177 
0 1 1 3.755 063 084 598 1 

0.1 0.1 0.1 0.1 1.~ 1.69 1.21 

0 0 0 1.797 312 142 821 8 
1 0 0 2.994 932 205 133 7 
0 1 0 3.088 731 039 392 4 
0 0 1 2.890 761 654 017 6 
1 0 1 4.087 785 982 444 0 
0 1 1 4.176 686 910 250 4 

nx ny nz -A - #  r 1 ~ a~x @ w~z 

0.1 0.1 0.1 0.1 1 1 1 

0 0 0 1.493 889 754 341 9 
1 0 0 2.491 684 592 452 0 
0 1 0 2.470 417 864 392 6 
0 0 1 2.479 961 732 701 2 
1 1 0 3.486 312 410 921 9 
0 1 1 3.484 080 131 302 4 
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by looking for stability of the results with respect to the small variations of ax, ay, 
az at given values of the perturbation parameters; this picture is very clear in 
Table 5. 

The energy eigenvalues for a double well potential V~(x, y, z; Z~, Z~, Z2z, A) in a 
three-dimensional system are calculated, and their energy eigenvalues are given in 
Table 4, for several eigenstates E0o0, E010, E001, E011, El 10, El01, Ell1 and for various 
values of Z~, Z~, Zz 2 and A. We achieved results with high accuracy by varying the 
convergence parameters ax, ay, az and increasing the dimension of H(M, N, L). 
Even higher accuracies can be achieved at the expense of greater computation 
times. 

We should comment here that the sensitivity of the results for the double well 
potential V~ (x, y, z; Zx 2, Z~, Zz 2 , A) to the values of the convergence parameters is less 

Table 4 
Eigenvalues for the double-well potential V~(x, y, z; A, Z~, Z~, Z~) for several sets of parameters A, 

2 2 Z~, Zy and Z~. 

z~ z~ z~ (o,o,o) (1,o,o) (O,l,O) (o,o,1) 

1.5~ 5 6 8 -4.2089203909 -1.2695363272 -1.9487401637 
1 4 5 6 -3.7951941464 -1.4046920036 -2.2457674270 
3 4 5 6 1.6920177798 5.4085248417 4.9428256619 
5 1 2 3 5.3813154487 10.8591103587 10.5317790363 
10 2 3 4 6.8694908083 13.6524250439 13.3915201768 
15 2.5 5 6 7.6288203735 15.4517096051 14.8773968036 
25 5 7.5 10 8.6400011334 17.6854676839 17.1955310426 
50 5 10 15 11.3959002985 23.1701253327 22.4075939324 
102 10 20 30 13.4314180120 28.1489302777 26.9208539381 
103 50 75 100 30.8470156963 62.0823088756 60.6648890561 
104 100 150 200 75.4372892252 144.9710534466 143.7016756623 
105 400 500 600 166.5007933768 316.5824930484 315.4196477084 
106 500 103 104 342.8777073875 675.6813343918 673.0127649141 

-3.8563290308 
-3.3820801205 

4.4354816840 
10.1894331020 
13.1231886059 
14.6387792635 
16.6857992882 
21.6069719240 
25.6133853735 
59.1997061854 

142.4142827569 
314.2301591983 
622.0165183266 

A Zx 2 2.y 2 Zy 2 (0, 1, I) (1, O, 1) (1, 1, O) (1, 1, 1) 

1.5 5 6 8 -0.9288022685 -0.365963424 1.240162172 
1 4 5 6 -1.1538776288 -0.469239288 0.472778214 
3 4 5 6 8.5761831950 8.898034334 9.421983686 
5 1 2 3 16.1671774815 16.463119215 16.772889953 
10 2 3 4 20.6675488416 20.903648182 21.146591152 
15 2.5 5 6 23.0878091383 23.606539393 23.822216095 
25 5 7.5 10 26.6855508711 27.126820122 27.586277012 
50 5 10 15 34.4194425131 35.108104259 35.831825933 
102 10 20 30 41.4570738270 42.560805592 43.738352405 
103 50 75 100 93.8487388021 95.128723987 96.452664870 
104 100 150 200 220.3512481378 221.507970413 222.680434249 
105 400 500 600 483.5899934131 484.659710800 485.735581406 
106 500 103 104 998.5727443619 1000.998437770 1047.399135131 

2.846361313 
2.057167192 

13.688715574 
23.045118524 
29.221425091 
32.944748459 
38.186366376 
49.223254109 
60.047777705 

133.383835350 
307.057428627 
670.408643046 

1410.533240732 
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Table 5 
The convergence of  two eigenvalues for the states ~000 and ~100 for the potential V~3(x, y, z; A, lz, rl, 
~), as a function of the convergence parameters ax, ay, az. The empty spaces mean the eigenvalues 
cannot be obtained with the values ofconvergence parameters. 

A = 0 . ' , #  = - 0 . 1 , r / =  0 .1 , f f  = 0 . 1 , o ~  x = 0 . 4 9 , ~  = 1.69,o.~ = 1 

Eooo ax ay az 

0.6 0.7 0.8 
1.4937521356564 0.98 0.96 1.1 
1.4937521356564 1.1 1.2 1.3 
1.4937521356 1.6 1.7 1.8 
1.493752 2.2 2.4 2.6 
1.494 2 2.5 2.8 
1.49 2.5 2.8 3 

El00 ax c~>, ce z 

0.6 0.7 0.8 
2.18 0.95 0.98 1.1 
2.1852 1.1 1 0.95 
2.1851484018 1.2 1.15 1.1 
2.1851484018828 1.4 1.1 1.2 
2.1851484018828 1.5 1.2 1.25 
2.18 1.7 1.6 1.8 

Table 6 
Convergence for some eigenvalues for the double-well potential ~ ( x ,  y, z; A, Z~, Z~, Z~) for several 
sets of parameters A, 2x 2, Z~ and Zz 2 for various values of the convergence parameters ax, ay, az. The 
empty spaces mean the eigenvalues cannot be obtained with the values of convergence parameters. 

z~ z~ z~ (o, o, o) (1,1,1) ~ ~y ~y 

15 2 4 6 4 5 6 
7.8267987 33.378436 8 10 12 
7.8267987280488 33.378436640432 10 12 14 
7.8267987280488 33.378436640432 11 13 15 
7.8267987 33,3784366 15 18 20 

106 500 103 104 342.8 1410.5 240 260 280 
342.8777 1410.5332 300 320 340 
342.877707387 1410.5332407 360 380 400 
342.8777073875 1410.533240732 420 430 440 
342.8777073875 1410.533240732 425 425 445 
342.8777073875 1410.533240732 450 460 480 
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t h a n  in the case o f  the other  potent ia ls  V2(x, y; A, #) and  V~3 (x, y, z; A, r/,/z, (); this 
is clear f r o m  Table  6. 

W e  should  poin t  ou t  tha t  Ai tken ' s  t r a n s f o r m a t i o n  appl ied to the i terates  En leads 
to an  accelera t ion in the rate  o f  convergence o f  the calculat ions  and  increases the 
accuracy  for  a given compu t ing  time. 
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